判断一个整数的二进制位中有多少个1

循环: x = x & ( x - 1 ); count++; 直到x为0为止。该方法的时间复杂度是O(m)

在此,不妨把x的二进制位表示为
          x=an-1an-2...a0。
按从低位到高位的顺序,不失一般性,假设x的第i位为第一个为1的二进制位,即:ai=1。此时有:
          x       =an-1an-2...ai+1100...0              <1>
         (x-1)  =an-1an-2...ai+1011...1              <2>
很明显,从式1和式2可以得出,在第一次 x & (x-1) 后:
          x=an-1an-2...ai+1000...0
之后重复同样操作,直到x的二进制位中没有1为止
从上面可以看出,每执行过一次 x & (x-1) 后,都会将x的二进制位中为1的最低位的值变为0,并记数加1。
目前而言,一个整数最大64bit,所有三种方法执行起来都可以认为是0(1)。

发布了270 篇原创文章 · 获赞 273 · 访问量 377万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览